The HIV-1 Nef protein and phagocyte NADPH oxidase activation.

نویسندگان

  • Frederik Vilhardt
  • Olivier Plastre
  • Makoto Sawada
  • Kazuo Suzuki
  • Maciej Wiznerowicz
  • Etsuko Kiyokawa
  • Didier Trono
  • Karl-Heinz Krause
چکیده

Nef, a multifunctional HIV protein, activates the Vav/Rac/p21-activated kinase (PAK) signaling pathway. Given the potential role of this pathway in the activation of the phagocyte NADPH oxidase, we have investigated the effect of the HIV-1 Nef protein on the phagocyte respiratory burst. Microglia (cell line and primary culture) were transduced with lentiviral expression vectors. Expression of Nef did not activate the NADPH oxidase by itself but led to a massive enhancement of the responses to a variety of stimuli (Ca(2+) ionophore, formyl peptide, endotoxin). These effects were not caused by up-regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation on the NADPH oxidase in intact phagocytes. Rac activation is not sufficient to stimulate the phagocyte NADPH oxidase; however, it markedly enhances the NADPH oxidase response to other stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIV-1 Nef regulates the release of superoxide anions from human macrophages.

The NADPH oxidase enzymatic complex participates in the oxidative burst by producing ROS (reactive oxygen species). Altered levels of ROS production may have pathogenetic implications due to the loss of some innate immune functions such as oxidative burst and phagocytosis. Considering that HIV-1 Nef protein plays a primary role in AIDS pathogenesis, by affecting the immune system, we sought to ...

متن کامل

P-21 activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils Pak regulates phagocyte NADPH oxidase

P-21 activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils Pak regulates phagocyte NADPH oxidase Kendra D. Martyn, Moon-Ju Kim, Mark T. Quinn, Mary C. Dinauer and Ulla G. Knaus These authors contributed equally to this work Dr. Martyn and Dr. Kim performed research Dr. Quinn and Dr. Dinauer contributions are essential reagents and manuscript revision Dr. Knaus designed ...

متن کامل

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide

Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 44  شماره 

صفحات  -

تاریخ انتشار 2002